
MMKCCHROPPRROOEEESSSSOORR AANNIB

CCOOMMPPUUTTEERR AAPRCCHHITTEEETTUURREE

UNIT-2

pipelining

feedbackkorrections : vibha@pesu.pes.edu VIBHA MASTI

PIPELINING

• Multiple instructions overlapped in execution

• Parallelism

°

eg: assembly line for automobile manufacturing
• Each step : pipe stage) segment

• Stages connected to form pipe

• Instructions enter from one end
, progress through the stages ,

and exit through the other end

throughput
• automobile - how often a completed car exits assembly line

• computer - how often instruction exits pipeline

• time required to move instruction from stage i to stage it I
in the pipeline is called processor cycle

° length of processor cycle determined by time required for the

slowest pipe stage

• time per instruction =

time per instruction on unpipelined machine

no . of pipe stages

SEQUENTIAL

-
executed

completely

PIPELINED

ARM ARCHITECTURE - 5 stage pipeline

° ARM9TDMI - 5 stages Harvard
° ARM7173Mt - 3 stages von Neumann

1 . Fetch IF

2 . Decode ID

3
. Execute EX

4
. Buffer /Data or Mem Access MEM

5
. write back WB

' 3 stage: fetch , decode , execute

throughput

°

Throughput = instructions completed per second Chow often an

instruction is completed) due to parallelism

•

Latency
-
- time taken to execute a single instruction in the

pipeline

Q : Determine pipeline throughput and latency
←

pipeline registers
store values

b/w cycles

delays
w

T
max delay

throughput = I instr / Io ns cignoring pipeline register overhead)

latency = 5-141-5+10 -14 = 28 ns for isolated instr)

Example

instr 1 IF ID EX MEM WB

instr 2 IF ID EX MEM WB

instr 3 IF ID EX MEM . . .

instr 4 IF ID EX

instr 5 IF ID

. one instruction per clock cycle

° unbalanced pipeline : each instr takes diff times - latency of
each instruction increases and time is wasted

• solution : balance by making all instr as long as slowest

one

Stages of Pipeline

5- Stage ARM Processor

instr

←
cache

1 . Fetch CIF)
• instr fetched from memory
° placed in pipeline
° Pc updated to PC -14

• one clock cycle control

signals

2 . Decode CID)
• instr decoded
•

reg operands read from reg files
• 3 operand read ports
• equality test on reg for

possible branch
• sign extend offset
° one clock cycle
• branch : only fetch Ep decode

° add sign -extended offset to PC in case branch needs to

.

happen c.branch target address)
if branch needs to happen , store back in PC reg

• fixed- field decoding

3
. Execute LEX)

° effective address cycle
. ALU operations (barrel shifter, multipier , MUM
° three possible functions

(a) Memory Reference
- ALU adds base reg and offset to calculate effective

address LDR RO
,
CRI]

, # 4

(b) Reg- Reg ALU instruction

- ALU performs operation specified by opcode on values

read from reg file
cc) Reg

- Imm ALU instruction
- ALU performs operation specified by opcode on first value

read from reg file and sign extended immediate

c- effective address compute
• in LOADI STORE architecture

,
EA and execution cycles are combined

to single clock cycle as no instr needs to simultaneously do

both CLDRISTR VS ALU)

4. Baffert Data or memory Access CMEM)

• Data in memory is accessed CLDRI STR)
• Otherwise

,
ALU result buffered for one clock cycle

• LOAD : men read using effective address

• STORE : mem writes from second reg to effective address

5
. Write back CWB)

• Data written back to reg (result of instr)
° Data either from memory system (LOAD) or ALU

execution time

CPU Time = instruction count CIC) x clock cycle x CPI

t

Pipeline Issues cycles per instr

1 . Pipeline imbalance
- reduces performance as clock can run no faster than

time needed for slowest pipeline stage
- unbalanced pipeline

2. Pipeline latency
- limits arise from imbalance among pipeline stages and

pipelining overhead

3. Pipeline overhead
- combination of pipeline register delay and clock skew

4. Pipeline registers delay
- add setup time that triggers a write and propagation
delay to the clock

5 . Clock skew
- Max delay between when the clock arrives at any
two registers (pipeline regs)

•

HAZARDS

. Dependency of instructions : instructions need to wait

for execution before next dependent instruction can

execute

• Ideal pipelines : no dependence

Q:

speedup : avg instruction time unpipelined

avg instruction time pipelined

avg unpipelined = (1×4×0.4) 1- (1×4×0-2) -14×5×0.4)
= I.Gt 0.8+2.0

= 4 -4 ns

avg pipelined = I +0.2

= I -2 ns

Speedup -- ,4 = 3.67 times

- HAZARDS

• Situations that prevent next instruction in instruction

stream from executing in its designated clock cycle

• Hazards reduce performance from ideal speedup

• Hazards make pipeline stall - no new fetching during stall

1) structural hazards
- arise from resource conflicts
- hardware unable to support all combinations of

overlapping instructions

2) Data Hazards

- instruction depends on results of previous instruction

- exposed by overlapping of instruction

3) control Hazards
- pipelining of branches / instructions that change PC

Performance of Pipelining with stalls

• Causes pipeline performance to degrade from ideal

performance

CASE 1 : NO DEPTH

Actual speedup = CPI unpipelined ✗ clock cycle unpipelined
CPI pipelined ✗ clock cycle pipelined

-

- CPI unpipelined 40k¥unpinned
CPI pipelined

×
clock#epipelined

assume equal

= CPI unpipelined
① t pipeline stall clock cycles per instruction
T
ideal

speedup = CPI unpipelined
I t pipeline stall clock cycles per instruction

CASE 2 : DEPTH

pipeline depth = no . of stages

speedup = pipeline depth
It pipeline stall clock cycles per instruction

i . structural Hazards

Hazards - Von Neumann Architecture

- same Mem for instr
,
data

•

. stall added Cpipeline bubble)

Eliminate Hazard
'

Duplicate resource CI- cache
,
D -cache)

- stall pipeline Cho-op)

2. Data Hazards

- Dependency : name q data dependency
- Results of prev instructions required for next instructions
- Pipeline registers

1) Read After write CRAW) Hazard

- instr J reads before instr I writes it

ADD RIO
,
R2
,
123

SUB 124,1210 , 125
AND 125

,
126
, } daffy

from

OR 126,127 ,④ required

- aka data dependency

④* HD# DE IMEMI#WBIb ready here
④AND#

DE-MMEMI-MWBIHDNHHDFDE-MMEMI.tlWBI
solution

- stall pipeline (2 stalls for eg)
- data forwarding / operand forwarding
. ALU : no stalls if DF used

HD DE# IMEMI#WBI

④AND# DE IMEMI#WBI

- stalled for only 1 CC

LW RIO
,
0422)

SUB 124,1210 , 125
AND 125

,
126
, RIO

OR 126,127 ,④

HD DE# IMEMI#WBI

Ef ④AND# DE IMEMI#WBI

- stall needed

'

No way to eliminate stalling

2) Write After Read (WAR) Hazard

- instr J writes before instr I reads it

ADD ④ , 123
←

supposed to be

SUB RI
,
124
,
R5 overwritten

after reading
- no data dependency

- out of order execution : instr J ends up writing
before instr I (permits 000 exec)

- aka anti dependency or name dependency
(name causes conflict

,
not result)

solution

- use different register name

3) Write After write CWAW) Hazard

- instr J writes before instr I writes it

ADD RI
,
R2
,
123

SUB RI
,

124
,
125 can end up

MUL R2
, RI , RG

← reading wrong data

- output dependency I named dependency

Q: a = btc;
d -- e -f; (MIPS)

LW Rl
,
b 75 cc

dependency f
LW R2

,
c 7 6 CC

ADD RO
,
RI
,
R2 I 8 CC

LW followed SW RO
,
a 39 CC

by ALU : LW R 4
,
e 3 10 CC

1- Stall LW 125
,
f 7 11 CC

SUB 123
, 124,125 I 13 CC

SW 123
,
d ' 14 CC

Data Forwarding
- hardware solution

compiler Rearrangement
- software solution - software scheduling
- reduce dependencies by changing order
- minimise penalty
- without changing logic

LW Rt
,
b design tradeoff :

LW R2
,
c stalling vs

LW R 4
,
e dummy instruction

LW 125
,
f

ADD RO
,
RI
,
R2

SW RO
,
a

SUB 123
, 124,125

SW 123
,
d

FLUSHING PIPELINE

-

Pumping in O 's to empty pipeline

3
. Control Hazard

- control sequencers

beg ri
,
r3
,
36

add 82
,
r3
,
84

and 85
,
r6
,
87

36 Kor M
,

RS
,
09

- PC→ Pct offset in branch instruction

↳ target address

IF Y ID# IE MEM WB

branch ready - after ALUoutcomev here
computes

fall through IF # IDF IE MEM WB

instructions { if # ID# ie # MEM WB

- if branch condition is true
,
next fall through instr

should be flushed from pipeline

- when decision made
,
3 instr in pipeline

solution

1 . Stall pipeline until outcome of branch known
2 . Zero tester circuit
- move decision hardware to ID stage

- Branching done at ID stage - takes 2 cc

- Henceforth : branch - 2 CC

- Branch prediction : field in CS ; moment it is fetched ,
decide if it is branch (research topic)

Branch Prediction

I . Static branch prediction compile time
2. Dynamic branch prediction run time

static branch prediction

• compiler makes prediction ; ID stage

° 4 alternatives

1
.

Stall until branch direction is clear

- do nothing until direction known

2 . Predict branch not taken
- untaken branch

' compiler thinks not taken
-

penalty if taken

3 . Predict branch taken
- taken branch
-

penalty of Icc if wrong (untaken)

4 . Delay slot
. insert another useful instruction right after branch
. special instr (delay slot) that would otherwise also

execute

IF Y IDF IE Y MEM WB

instruction → IF -§ ID# IE # MEM WB

✓ >
IF Y IDF IE →f MEMY WB

branch outcome

- three kinds :

(4A) From before

DADD Rl
,
R2 , 123

instruction 122=0 THEN

before branch

DELAY SLOT

<

hardware(4b) From target can

← determine

DSUB R4,R5
,
Rb <

high probability that
DADD Rl

,
R2 , R3 branch condition is

true and branch isinfraction(f rz=o THEN taken
(immediate

instr after

target) DELAY SLOT

(4C) From fallthrough

DADD RI
,
R2
,
R3

IF RI -- O THEN

high probability of
fallthroughµ

DELAY SLOT branch not taken
instruction

DSUB 124
,
R5
,
Rbc

BRANCH HISTORY TABLE

. some bits reserved to store branch history

. branch prediction buffer CBPBIBHT)

. at runtime
, prediction made using BPB table

lookup)

dynamic branch prediction

° based on branch prediction buffer
,
decisions made at

runtime

° two kinds :

° IF stage : buffer

1. one -bit predictor

. O Eet : 2 States
- not taken g taken

branfhytakenrana.by?nIhak:ontnot taken

→
→ not no . of mispredictions

taken
taken depends on start

(mispredictions
✓

stat
branch

often) taken

2- Two -bit predictor
conviction

bits

00 strong not taken

wweeaakktanoetn taken
it strong taken

prediction
bits

variant 't

taken

not taken weak

strong → taken
taken 11

¥en 10

taken (g) not taken
not taken

→
→ 01 strong not00
✓

g
taken

weak
taken ✓not taken not taken

Variant 2

taken

I not taken weak

strong → taken

taken 11
stake

10

taken,t¥
not

→ o ,
fakers
r

OO strong not
-

f
taken

weak
taken ✓not taken not taken

Q : Assume

(a) Pipeline contains 5 stages
(b) Each stage : I CC

How many cc in nonpipelined

LDR 124
,

= A @ A -- 400

LI : LDR RI , [1247

LDR R2
,
[124

,
#400T""(as:{

"

ii.
"

iri 's
"

SUB 124,124 ,# 4

BNEZ 124
,
Ll

(It 6×421,1×5=3005 CC

Q : consider instr pipeline w 4 stages , stage delay
-

- 8ns
,

register delay
-
- O

. Speedups? 100 instr

Unpipelined = 8×4×100 k=4

= 3200ns n = 100

to -- 8

Pipelined -- (Kt n-1) * te
= (4+99)×8 = 103×8

-

- 824 ns

Speedup = 32002=3.9
824

Q : consider MIPS32 processor pipeline , data references = 42-1 .
,

ideal CPI is 1.25 (ignoring men structural hazard) .
How

much faster is ideal machine without hazard vs with hazard ?

Speedup -- ideal CPI x Pipeline depth
ideal Cpl t stall cycles per instr

= 1.25 XK -
- k i - cache he d-cachespeedup

ideal
1.25+0

Speedup real = I -25 XK = 1.25 Xk

l -251-0.42×1 I - 67

faster = 1.6-7 = 1.336

I-25

Q: calculate CC for execution of this segment on simple pipeline
without data forwarding when result of branch instr Chew Pc)

is available after WB stage .
Show timing

↳ : LDR
,
RI
,
[1243 IF ID EX M W

LDR R2 , 924 , #400] IF ID EX M W

g
v

ADD 123
,
RI
,
R2 IF ID K A EX M W

STR 123,4243 IF * * ID EX t M W

SUBS 124,124, #4 IF ID H EX M W

Z
BNEZ 124,4 IF * ID * * EX M W

Q : same as above
,
with data forwarding

↳ : LDR
,
RI
,
[1243 IF ID EX M W

IF ID EX M WLDR R2 ,CR4 , #400]

y
ADD 123

,
RI
,
R2 IF ID K EX M W

STR 123,4247 IF * ID EX M W

SUBS 124,124, #4 IF ID EX M W

BNEZ 124,4 IF ID EX M w

→
no of pipe stages

speedup -- pipeline depth
It CPI Penalty ideal CPI = I

speedup -- pipeline depth
It branch freq* branch penalty

speedup -- pipeline depth
It g. branch - (%

f. penalty ,-
t Int . penalty ,vT)

